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ABSTRACT
Human error remains a critical concern in aviation safety, contribut-
ing to 70-80% of accidents despite technological advancements.
While physiological measures show promise for error detection
in laboratory settings, their effectiveness in dynamic flight envi-
ronments remains underexplored. Through live flight trials with
nine commercial pilots, we investigated whether established error-
detection approaches maintain accuracy during actual flight opera-
tions. Participants completed standardized multi-tasking scenarios
across conditions ranging from laboratory settings to straight-and-
level flight and 2G manoeuvres while we collected synchronized
physiological data. Our findings demonstrate that EEG-based clas-
sification maintains high accuracy (87.83%) during complex flight
manoeuvres, comparable to laboratory performance (89.23%). Eye-
tracking showed moderate performance (82.50%), while ECG per-
formed near chance level (51.50%). Classification accuracy remained
stable across flight conditions, with minimal degradation during 2G
manoeuvres. These results provide the first evidence that physiolog-
ical error detection can translate effectively to operational aviation
environments.
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1 INTRODUCTION
Despite decades of technological progress and regulatory improve-
ments in aviation, human error continues to be implicated in 70-80%
of aircraft accidents and incidents [44]. While current approaches
rely on post-incident analysis and self-reporting, these methods
cannot enable real-time intervention when errors occur [35]. Prior
advances in wearable physiological sensors offer a promising new
direction – the potential to detect errors as they emerge, enabling
proactive intervention [6]. Laboratory studies have demonstrated
that physiological signals like EEG, ECG and eye movements can
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indicate error states with high accuracy [10]. However, transition-
ing these findings from controlled settings to the dynamic aviation
environment presents significant challenges. Aircraft motion, elec-
tromagnetic interference, and operational stresses could all impact
signal quality and reliability [46].

To the best of our knowledge, no prior work has validated er-
ror detection from physiological signals in airborne scenarios. We
conducted a novel investigation examining whether established
error-detection approaches from laboratory studies can translate
effectively to the airborne environment. Through a series of live
flight trials with nine participants, we collected synchronized physi-
ological data (EEG, ECG, eye tracking) while participants completed
controlled multi-tasking scenarios across different flight conditions.
Our preliminary results suggest EEG-based detection achieves 87.8%
accuracy even during complex manoeuvres, comparable to labora-
tory performance [3]. These findings lay the groundwork for devel-
oping adaptive cockpit interfaces that could enhance aviation safety
through early error detection and intervention [5]. This workmakes
three key contributions to human-computer interaction research:
1) a methodology for eliciting and measuring human error across
varying environmental conditions; 2) a framework for assessing
the translation of laboratory-derived physiological measurement
approaches to dynamic operational settings; and 3) quantitative
evidence examining the feasibility of multi-modal physiological
monitoring in aviation contexts.

2 RELATEDWORK
Traditional approaches to error detection in aviation have primarily
relied on observer ratings, self-reporting, and post-flight analysis
[44]. While valuable, these methods suffer from significant lim-
itations - they are retrospective, subject to perception bias, and
crucially, cannot enable real-time intervention [21, 49]. Prior work
has explored automated detection systems based on behavioural
metrics [43], but these approaches often fail to capture the cognitive
states that precede error commission. This gap between detection
and intervention capabilities has motivated the exploration of phys-
iological approaches in human-computer interaction research [5, 8].
Laboratory studies have identified several promising physiologi-
cal indicators of error states. EEG research has revealed specific
error-related potentials (ERPs) that occur within milliseconds of
error commission [9, 10]. These neural signatures have shown par-
ticular promise for human-computer interaction, with prior work
demonstrating their potential for adaptive interface design [3, 50].
Previous work by Vi and Subramanian [41] demonstrated that error-
related potentials can be reliably detected using consumer-grade
EEG headsets in controlled settings, while Vi et al. [42] showed
these signals can even be detected when observing others perform
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tasks. Eye-tracking studies have revealed characteristic patterns in
gaze behaviour and pupil dilation associated with error awareness
[18, 25], while heart rate variability measures derived from ECG
have shown sensitivity to cognitive states that may predict error
likelihood [24, 39].

However, implementing physiological monitoring in operational
environments presents significant challenges for human-computer
interaction design. Aviation contexts introduce unique complica-
tions including motion artefacts, electromagnetic interference, and
the need for unobtrusive sensor placement [6, 46]. Previous at-
tempts to translate laboratory-based monitoring to real-world set-
tings have highlighted the importance of robust signal processing
and careful consideration of environmental factors [12, 19, 27, 28].
This transition requires careful validation of both signal quality
and classification reliability under actual operational conditions.
Previous work in human-computer interaction has explored various
approaches to error prevention in complex operational environ-
ments, from adaptive automation systems [32] to context-aware
interfaces [36]. However, these approaches typically rely on be-
havioural or performance metrics rather than direct physiological
indicators of error states. The integration of physiological monitor-
ing could enable more proactive and personalised error prevention
strategies [17, 38], but this requires understanding how well these
measures perform in dynamic environments. Our work addresses
this crucial gap by examining how physiological error detection
methods translate to airborne environments, providing essential
insights for the development of physiologically-adaptive interfaces
in safety-critical systems.

3 METHODOLOGY
3.1 Participants
To determine an appropriate sample size for our within-subjects
study design, we conducted a power analysis considering medium
effect size (f = 0.35), power of 0.80, and alpha level of 0.05, indicating
a minimum requirement of eight participants (see Appendix Section
A). To ensure we met all requirements for this investigation we
recruited nine male commercial pilots through internal communi-
cations at BAE Systems. All participants held UK Commercial Pilot
Licenses with DA42 aircraft clearance. Each assessment utilised a
three-person crew: a participant performing cognitive tasks while
wearing physiological sensors, an aircraft pilot performing ma-
noeuvres and ensuring flight safety, and an equipment specialist
managing data collection. Due to prescription eyewear require-
ments during flight, eye-tracking data was collected from four of
the nine participants. The study protocol was approved by BAE
Systems ethics review board.

3.2 Environmental Scenarios
The experimental design implemented a progressive series of test-
ing environments to evaluate physiological error detection across
increasingly challenging operational conditions. Beginning with a
controlled laboratory baseline environment, we established funda-
mental error prediction capabilities without environmental stres-
sors, providing critical reference data for validating physiological
measurement reliability. This controlled setting served as the foun-
dation for comparing subsequent airborne performance measures.

The initial airborne testing phase utilised straight-and-level flight
(S&L), introducing participants to the basic challenges of flight
operations including vibration, electromagnetic interference, and
confined space considerations. During S&L trials, a safety pilot
maintained stable flight conditions while participants engaged in
the multi-tasking scenario, enabling assessment of error detection
capabilities under standard flight operations. This intermediate
testing environment bridged the gap between laboratory condi-
tions and more demanding flight scenarios. While environmental
conditions necessarily progressed in order of increasing physical
demands due to operational safety protocols, task difficulty levels
(low, medium, high) were randomized within each environment
to control for learning effects and time-dependent factors such as
fatigue.

The most challenging testing environment involved sustained
three-minute spiral manoeuvrers generating twice normal grav-
itational force (2G). These controlled spiral descents introduced
substantial physical and vestibular challenges, enabling evaluation
of error prediction robustness under extreme flight conditions [12].
The 2G environment specifically tested the resilience of physiolog-
ical measurement systems and error detection algorithms under
conditions that significantly impact human cognitive and physiolog-
ical functioning. All flight scenarios were conducted in a Diamond
DA-42NG aircraft between 3,000 and 8,000 feet in non-pressurised
conditions, ensuring consistent environmental parameters across
trials. This systematic progression from controlled to increasingly
complex environments facilitated a comprehensive evaluation of
physiological error detection across realistic flight operations [6].
The unique combinations of motion effects, gravitational forces,
and operational demands in each airborne environment provided
an ideal context for validating these systems under conditions that
closely approximate real-world aviation challenges.

3.3 Task Design & Data Collection
To train and validate our error prediction models, we required
accurately labelled timestamps of error occurrences aligned with
subjects’ physiological data. The IMPACT Tool [37] (Figure 2) was
selected over alternative multi-tasking paradigms for its distinct
advantages in our flight research context. While established al-
ternatives offer validated workload assessment, IMPACT provided
superior flight-domain specificity with interfaces directly mirroring
avionic systems encountered by our commercial pilot participants.
Additionally, IMPACT’s tablet deployment offered logistical advan-
tages for cockpit integration compared to traditional desktop-based
alternatives, particularly during challenging 2G maneuvers where
space constraints and equipment security were critical concerns.
The tool consists of four distinct interfaces, each designed to elicit
and automatically log errors during specific sub-tasks.

The Radio Comms interface challenges spatial cognition and audi-
tory processing by requiring participants to track convoy positions
through audio updates, recording errors when position classifica-
tions deviate from actual locations. The Ground Threats section
demands rapid visual discrimination of ground-based targets, mea-
suring visual processing speed and classification accuracy with
errors documented at misclassification or when targets move off-
screen unclassified.
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Figure 1: Overview of the Task Procedure

Figure 2: IMPACT Tool Visualisation

TheWarnings Panel focuses on sustained attention and response
time through system monitoring, where participants must acknowl-
edge alerts within a 5-second window, with errors marked at time-
out events. Task difficulty was systematically manipulated across
three levels (low, medium, high) by adjusting event frequency and
response windows to increase cognitive load and induce varying
error rates, which it was successful in doing (see Figure 3), enabling
evaluation of our models across different stress conditions. Each
difficulty level was maintained for 3-minute intervals. The IMPACT
Tool’s logging system precisely timestamps all participant interac-
tions, enabling accurate temporal alignment between error events
and physiological responses. These timestamps serve as markers for
extracting relevant windows of physiological data around error oc-
currences, facilitating the training of our machine learning models.
To ensure balanced representation in our classification approach,
error-free samples were uniformly selected from non-error events
across all experimental conditions [12].

3.4 Experimental Procedure
Participants first received safety briefings and underwent physi-
ological sensor fitting with three research-grade devices: a g.tec
EEG system (24 channels, 256 Hz - sample rate) with wet gel-based
electrodes, Tobii Pro 3 glasses for eye-tracking (100 Hz - sample
rate), and a Polar H10 ECG chest strap (130 Hz - sample rate). All
devices were selected based on CE certification and internal flight
clearance requirements. Prior to data collection, participants com-
pleted multiple practice sessions with the IMPACT Tool until they
reported confidence with all tasks and demonstrated consistent per-
formance. The tablet-based IMPACT Tool was hosted on aMicrosoft
Surface Pro 7, securely mounted to the cockpit window using a
suction cup holder for optimal viewing and interaction. Following
familiarisation, trials progressed through three environments of
increasing complexity. The baseline environment established refer-
ence measurements under controlled laboratory conditions without

flight-related stressors. Subsequent straight-and-level (S&L) flight
introduced real aviation conditions while maintaining stable flight
characteristics. Finally, the 2G spiral condition presented the high-
est physical and cognitive demands. Within each environment, task
difficulty levels (low, medium, high) were randomised to control for
learning effects, with each difficulty level maintained for 3-minute
intervals. All flight operations were conducted in a Diamond DA-
42NG aircraft between 3,000 and 8,000 feet in non-pressurised con-
ditions, with continuous physiological data recording throughout
all trials (see Figure 1).

3.5 Physiological Data Processing
Each physiological modality required preprocessing to address po-
tential aviation-specific artefacts such as electromagnetic interfer-
ence from cockpit instruments and motion artefacts from flight
manoeuvres [6]. EEG data underwent bandpass filtering (0.5-50 Hz)
to isolate relevant neural frequencies while removing muscle arte-
facts and electrical noise [46], followed by re-referencing to improve
signal quality for mobile EEG recordings [19]. Eye-tracking data
was processed using I-VT Fixation filtering, which has shown ro-
bust performance in dynamic environments for detecting saccades
and fixations [18], while ECG data was filtered using established
protocols for isolating cardiac components in noisy environments
[16, 24]. For feature extraction, we employed 1-second sliding win-
dows with no overlap, a duration shown effective for capturing
error-related physiological responses [3] while maintaining tempo-
ral precision. For EEG, we extracted frequency bands (delta, theta,
alpha, beta, gamma) and morphological characteristics shown to
correlate with error detection [10]. Eye-tracking features included
fixation patterns, saccadic movements, and pupillometry metrics
previously validated for cognitive state assessment [2]. ECG analy-
sis focused on heart rate variability measures that reflect cognitive
workload during error states [39]. We explored both standard 1-
second windows and extended 5-10 second windows with heart
rate normalization for HRV metrics. Despite these methodological
optimizations, ECG measures consistently performed near chance
level (51.50%) (See Table 1), suggesting cardiac signals may be too
heavily influenced by the physical demands of flight to serve as
reliable error indicators in this context (see Appendix B & C for
complete details).

3.6 Error Classification
To assess if physiological data captured within the airborne environ-
ment serves as an effective marker of error occurrence, we imple-
mented three machine learning approaches demonstrated effective
with limited physiological datasets: Random Forest [31], AdaBoost
[14], and Multi-layer Perceptron [33, 47]. These classifiers were
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Figure 3: Average Occurrence of Errors across Trial Environ-
ments and Difficulty Levels Per-Participant

selected based on three key considerations: their proven robustness
with limited training data typical of specialized aviation studies,
their established performance in prior physiological classification
tasks [26, 29, 47], and their interpretability—a critical factor for
initial validation in safety-critical contexts. Our focus was on estab-
lishing feasibility across varying environmental conditions rather
than maximizing classification performance through more complex
approaches. For all analyses, models classified 1-second windows
(selected based on established physiological literature showing this
duration optimally captures both error-related brain potentials oc-
curring 50-500ms post-error [9, 10] and relevant eye movement
patterns [18] while maintaining feasible latency for cockpit applica-
tions [50]) as error or non-error events, using two balanced classes
of data: timestamps of error events logged by the IMPACT Tool,
and uniformly sampled timestamps of non-error-events. Each clas-
sifier was trained separately on individual physiological modalities
(ECG, EEG, and Eye-Tracking). This study focused exclusively on
binary error classification rather than exploring workload-error
relationships, as our primary objective was to establish the fun-
damental feasibility of physiological error detection in airborne
environments.

We conducted three complementary analyses to evaluate er-
ror detection performance: First, per-participant analysis trained
individual classifiers for each participant using their combined
data from both ground and airborne trials, evaluated with 5-fold
cross-validation. This approach assessed feasibility for personal-
ized error detection by examining how well models perform for
each specific individual (results shown in Figure 4). Second, within-
subject analysis evaluated performance across all participants using
5-fold cross-validation while maintaining subject separation be-
tween folds [19]. Unlike per-participant analysis, this approach
trained a single model using data from all participants, testing how
well a unified model could detect errors across different individuals.
Third, between-subject analysis employed leave-one-participant-out
validation [1], training models on data from all participants except
one, then testing on the held-out participant’s data. This approach
evaluated whether error detection systems could be deployed with-
out individual calibration—critical for practical implementation in
aviation. For all analyses, performance was evaluated using accu-
racy and F1-score, with statistical significance determined against
a 50% random baseline using t-tests (p = 0.001) [30, 50].

4 RESULTS
Our analysis revealed three key findings regarding the feasibility of
physiological error detection in airborne environments: First, EEG

demonstrated robust error detection capabilities across all flight
conditions, achieving an average accuracy of 87.83% (±2.4%) during
airborne trials using cross-validation, only slightly lower than base-
line laboratory performance (89.23% ±2.2%). The precision-recall
balance remained strong in flight (87.70% precision, 84.40% recall),
suggesting EEG signals maintain their diagnostic value despite ad-
ditional noise and interference. This performance persisted even
under leave-one-out validation (86.80% accuracy, 86.80% precision,
83.30% recall for airborne), indicating potential generalisability
across pilots.

Second, eye-tracking showed promising but more moderate per-
formance, maintaining consistent accuracy around 82.50% (±3.3%)
during flight with balanced precision (82.20%) and recall (79.90%).
While lower than EEG, this reliability across conditions suggests
eyemovement patterns remainmeaningful indicators of error states
even during complex manoeuvres. However, the limited sample
size (n=4) for eye-tracking warrants cautious interpretation.

Third, contrary to our expectations, ECG performed near chance
level across all metrics (51.50% accuracy, 51.30% precision, 50.80%
recall), suggesting that cardiac measures may be too heavily in-
fluenced by the physical demands of flight to serve as reliable
error indicators in this context. This finding highlights the im-
portance of modality selection for operational implementations.
Notably, performance remained stable across different flight condi-
tions, with only minor degradation observed during 2Gmanoeuvres
compared to straight-and-level flight (average decrease of 2.1% for
EEG, 𝑝 > .001). This stability suggests that physiological error de-
tection could potentially remain viable even during complex flight
operations.

Analysis of individual participant performance revealed consis-
tent but varying levels of success across both EEG and eye-tracking
modalities (Figure 4). For EEG, classification accuracy ranged from
72% to 92% across participants, with most participants (7 out of 9)
achieving accuracy above 85%. Notably, participant P9 achieved
the highest EEG performance (92% accuracy, 90% F1-score), while
P6 showed the lowest (72% accuracy, 79% F1-score), suggesting
some individual variability in signal quality or task engagement.
Eye-tracking data, available for participants P3-P6, showed com-
parable though slightly lower performance levels, with accuracies
ranging from 78% to 88%. The strong correlation between accuracy
and F1-scores (r = 0.91, p < .001) across both modalities suggests
robust classification performance regardless of class distribution.
Interestingly, participants with both EEG and eye-tracking data
(P3-P6) showed complementary patterns – when EEG performance
decreased, eye-tracking often maintained higher accuracy, suggest-
ing potential benefits of multi-modal approaches. All participants
significantly exceeded chance-level performance (50%, indicated by
red dashed line) across both modalities (p < .001), demonstrating
the robustness of physiological error detection even in challeng-
ing flight conditions. The consistency of F1-scores with accuracy
metrics indicates balanced performance across error and non-error
states, an important consideration for operational implementation.
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Table 1: Average Model Performance Across Physiological Modalities Using Within-subject (CV: 5-fold Cross-validation) and
Between-subject (LOO: Leave-one-participant-out) Validation Strategies

Modality Environment Validation Strategy Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Random Both Both 50.00 ± 0.0 50.00 ± 0.0 50.00 ± 0.0 50.00 ± 0.00

EEG

Baseline Within-subject (CV) 89.23 ± 2.2* 89.50 ± 1.7* 86.60 ± 1.9* 88.00 ± 1.00*
Baseline Between-subject (LOO) 88.63 ± 2.3* 88.20 ± 1.8* 85.90 ± 2.0* 87.00 ± 1.00*
Airborne Within-subject (CV) 87.83 ± 2.4* 87.70 ± 2.0* 84.40 ± 2.1* 86.00 ± 1.00*
Airborne Between-subject (LOO) 86.80 ± 2.5* 86.80 ± 2.2* 83.30 ± 2.3* 85.00 ± 2.00*

ET

Baseline Within-subject (CV) 83.27 ± 3.1* 83.50 ± 2.7* 80.60 ± 2.8* 82.00 ± 2.00*
Baseline Between-subject (LOO) 82.47 ± 3.2* 82.30 ± 2.8* 79.80 ± 2.9* 81.00 ± 2.00*
Airborne Within-subject (CV) 82.50 ± 3.3* 82.20 ± 2.9* 79.90 ± 3.0* 81.00 ± 2.00*
Airborne Between-subject (LOO) 81.57 ± 3.4* 81.40 ± 3.0* 78.70 ± 3.1* 80.00 ± 2.00*

ECG Both Both 52.22 ± 3.1 51.43 ± 3.7 51.98 ± 3.9 51.70 ± 3.01
* indicates statistical significance compared to random baseline (p < .001)

Figure 4: Average Performance Per-Participant for EEG and
Eye-Tracking

5 DISCUSSION & CONCLUSION
Our findings demonstrate the feasibility of using physiological sig-
nals to detect operator errors in airborne environments, with signif-
icant implications for human-computer interaction in aviation con-
texts. The robust performance of EEG-based classification (87.83%
accuracy) during airborne testing suggests promising opportunities
for real-time error detection systems [6]. The success of both EEG
and eye-tracking measures opens possibilities for context-aware
cockpit interfaces that could adapt to pilot cognitive states before
errors manifest in behaviour [32]. Three key implications emerge
from our analysis. First, the high accuracy of EEG-based detection
in airborne environments demonstrates that laboratory-derived
approaches can translate effectively to dynamic settings [46]. This
validates the potential for physiologically-adaptive interfaces in
operational contexts. Second, the complementary performance of
EEG and eye-tracking suggests value in multi-modal approaches,
where different measures could provide redundant error detection
capabilities [12]. Third, the poor performance of ECG measures
(51.50%) highlights crucial challenges in separating cognitive from
physical responses during flight operations, emphasising the impor-
tance of careful sensor selection for operational implementations
[13].

Several limitations of our current study warrant discussion. A
methodological limitationwas our use of a fixed progression through

environmental conditions rather than a counterbalanced design,
necessitated by flight safety protocols and operational constraints.
This fixed ordering could introduce time-dependent effects where
vigilance decrements, fatigue, and learning might influence physio-
logical measures—particularly impacting EEG theta and alpha bands
[11], pupillometry responses [2], and ECG metrics [39]. While we
mitigated these effects by randomizing difficulty levels within each
environment, future research should consider counterbalanced de-
signs where operational safety permits. Our participant sample
(n=9) represents a highly specialised population of commercial pi-
lots with DA42 aircraft clearance, with recruitment constrained by
strict aviation safety protocols and the high operational costs of live
flight trials. The limited eye-tracking dataset (n=4) resulted from
prescription eyewear requirements—a common challenge in opera-
tional aviation contexts where safety equipment takes precedence
over research instrumentation.While these sample sizes are modest,
they are consistent with similar in-flight research protocols [5, 46],
and our power analysis indicated sufficient statistical strength for
our primary measures. Additionally, our use of standardised tasks
rather than actual flight operations potentially limits ecological
validity, while our focus on post-error classification rather than
pre-emptive error prediction limits applications for real-time in-
tervention. Future work should investigate how both our current
approach and potential pre-emptive systems could be integrated
into operational cockpits, addressing challenges including non-
intrusive sensor placement, appropriate intervention thresholds,
and pilot-centred feedback mechanisms [5]. Critical to successful
implementation will be understanding how pilots interact with
and trust such systems during actual flights [32]. This research
direction could fundamentally advance aviation safety by detecting
physiological precursors before errors manifest—a capability our
work demonstrates is feasible within airborne environments.

In conclusion, this work provides the first demonstration that
physiological error detection can maintain high accuracy during ac-
tual flight operations, offering new possibilities for human-computer
interaction in safety-critical environments. Our findings that EEG-
based classification achieves 87.83% accuracy even during complex
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manoeuvrers, while eye-tracking maintains 82.50% accuracy, sug-
gest that laboratory-derived approaches can successfully translate
to dynamic operational contexts. The complementary performance
patterns between modalities, coupled with insights about the lim-
itations of ECG measures (51.50%), provide crucial guidance for
developing robust error detection systems in real-world settings.
While challenges remain in translating these findings to operational
systems, our work establishes a foundation for future research into
adaptive interfaces that could enhance aviation safety through early
error detection and intervention.
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A POWER ANALYSIS
To determine the required sample size for our within-subjects study
design, we conducted an a priori power analysis using logistic
regression parameters. With an odds ratio of 1.5, 𝛼 = 0.05, desired
power (1-𝛽) = 0.80, and assuming a normal distribution of predictors,
the analysis indicated a minimum requirement of 8 participants to
achieve adequate statistical power. Our final sample of 9 participants
exceeded this minimum threshold, ensuring sufficient power for
our analyses.

Figure 5: Power Analysis of Required Number of Participants

B PHYSIOLOGICAL DATA PREPROCESSING
Raw physiological signals often contain artefacts and noise from
motor functions, electrical interference, and environmental factors
[19, 22].

B.1 EEG
Our autonomous preprocessing methods [15, 19, 46] include se-
quential filtering implemented through MNE-Python: bandpass
filtering (0.5-50 Hz using FFT-based FIR filter, transition bandwidth
0.1 Hz and 0.5 Hz for low and high respectively), and average re-
referencing across all scalp channels [4, 48]. Baseline correction was
applied using whole-signal mean subtraction. Data was processed
using 4 parallel jobs for computational efficiency, with signals sam-
pled at 256 Hz.

B.2 ECG
ECG preprocessing employs bandpass filtering (0.5-40 Hz, FFT-
based FIR filter) to isolate signals while preserving cardiac compo-
nents, and Discrete Wavelet Transform (DWT) for noise reduction.
Signal processing was performed on 130 Hz sampled data using
custom Python implementations of the firwin filter design.

B.3 ET
Eye-tracking data preprocessing uses Tobii Pro Lab with I-VT Fix-
ation filter (velocity threshold: 30°/s). For gaze patterns, we apply
median filtering (kernel size 3, 100ms window) for smoothing, con-
stant interpolation for gaps <75ms, and three-point velocity com-
putation over 20ms windows. Pupillometry processing involves
initial smoothing with a rolling median filter (3-sample window),
artefact detection for rapid changes (>1 mm/s), secondary smooth-
ing (5-sample median filter), and cubic spline interpolation for gaps
<200ms. Data was processed at the native 100 Hz sampling rate.
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C FEATURE EXTRACTION
To address computational challenges with high-dimensional phys-
iological data [12], we extracted key features from EEG, ET, and
ECG data as detailed below.

C.1 EEG Features
EEG features were extracted using a 1-second sliding window with
256 Hz sampling (512 samples per window) [47]. We computed six
feature categories: (1) Frequency domain features including PSD
bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, beta: 12–30
Hz, gamma: 30–50 Hz) [20]; (2) Statistical features (mean, variance,
skewness, kurtosis) [40]; (3) Morphological features capturing sig-
nal shape through curve length, peak count, and non-linear en-
ergy across 1–50 Hz [11]; (4) Time-frequency features from wavelet
transforms [15]; (5) Linear features using autoregressive coefficients

(AR, p = 2) [46]; and (6) Non-linear features including approximate
entropy and Hurst exponent [19].

C.2 Eye Tracking Features
Using Tobii eye-tracking glasses [18], we extracted twomain feature
types. First, gaze pattern features captured saccadic movements
(identified by velocity threshold >25°/s) [7, 25] and fixation points
[23]. Second, blink features were detected through median-filtered
pupillometry data within 70–450ms windows [2, 45].

C.3 ECG Features
ECG feature extraction focused on two key aspects [16, 24]. First,
statistical features characterised the ECG signal distribution through
mean, standard deviation, skewness, and kurtosis [34, 39]. Second,
RR interval analysis provided heart rate variability metrics includ-
ing mean interval duration, SDNN (standard deviation of intervals),
and coefficient of variation [16, 24].
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